Contact
Klaus Advanced Computing Building 1317
Georgia Institute of Technology
Atlanta, Georgia, USA
matthew.luebbers(at)gatech.edu
About
Personal
I'm a postdoctoral fellow in the School of Interactive Computing at the Georgia Institute of Technology, researching in the Cognitive Optimization and Relational (CORE) Robotics Lab, advised by Matthew Gombolay.
In 2024, I received my PhD in Computer Science from the University of Colorado Boulder, where I worked in the Collaborative AI and Robotics (CAIRO) Lab, advised by Brad Hayes. Before that, I graduated undergrad from Cornell University in 2018, where I also majored in Computer Science, specializing in and conducting research into artificial intelligence and robotics in the Robot Personal Assistants Lab (RPAL).
Since 2016, I have spent six summers interning at NASA's Jet Propulsion Laboratory in Pasadena, California. I have contributed to the Instrument Data Subystem (IDS) and Rover Planning Subystem (RPS) of multiple Martian surface missions - the Curiosity rover, the InSight lander, and the Perseverance rover. Throughout my summers working on the RPS team, I have had the incredible opportunity to help drive both Curiosity and Perseverance across five solar-days worth of traverse sequencing, where I have accrued a career Martian odometry of 228 meters (86 m on Curiosity, 142 m on Perseverance)!
Some of my interests outside of work include observational astronomy, aviation and space travel, traditional animation, language learning, and distance running.
Research
Robotics has traditionally been broken down into two distinct operational paradigms - autonomy and teleoperation. These approaches are inherently limited, however, by the respective weaknesses of autonomous systems and human operators. My research focuses on a third paradigm, where human and robotic agents are treated as teammates working towards a common goal, attempting to leverage each agent's relative strengths to boost the human-robot team's performance beyond the sum of its parts.
Much like in human teams, demonstrating productive and collaborative behavior in this setup requires plan synchronization (i.e., establishing a shared mental model). There's simply too much uncertainty in real world domains to make optimization meaningful without it. However, synchronizing human and robot plans is no easy task - humans and robots plan in fundamentally different ways, making shared reasoning about those plans an exercise in translation. Finding compact ways to facilitate this translation is at the core of my research.
I develop novel techniques for establishing the shared context between human and robot teammates needed to arrive at suitable multi-agent plans under uncertainty. My work leverages multiple communication modalities, such as augmented reality-based visualization and natural language explanation to underpin well-aligned planners interpretable by both human and robot, improving the fluency, transparency, adaptability, and trustworthiness of human-robot teaming architectures across a variety of task types.
Publications
Asterisk (*) denotes shared first authorship
Journal Articles
-
Aaquib Tabrez, Matthew B. Luebbers, and Bradley Hayes. (2020).
A Survey of Mental Modeling Techniques in Human-Robot Teaming.
In Current Robotics Reports. Springer-Nature. Link.
Conference Papers
-
Matthew B. Luebbers*, Aaquib Tabrez*, Kanaka Samagna Talanki, and Bradley Hayes. (2024).
Recency Bias in Task Performance History Affects Perceptions of Robot Competence and Trustworthiness.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2024). Yokohama, Japan. PDF.
Acceptance Rate: 45%. -
Yi-Shiuan Tung, Matthew B. Luebbers, Alessandro Roncone, and Bradley Hayes. (2024).
Workspace Optimization Techniques to Improve Prediction of Human Motion During Human-Robot Collaboration.
In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI 2024). Boulder, Colorado, USA. Link.
Best Paper Honorable Mention. Acceptance Rate: 25%. -
Matthew B. Luebbers*, Aaquib Tabrez*, Kyler Ruvane*, and Bradley Hayes. (2023).
Autonomous Justification for Enabling Explainable Decision Support in Human-Robot Teaming.
In Proceedings of Robotics: Science and Systems (RSS 2023). Daegu, South Korea. PDF.
Acceptance Rate: 31%. -
Christine T. Chang, Matthew B. Luebbers, Mitchell Hebert, and Bradley Hayes. (2023).
Human Non-Compliance with Robot Spatial Ownership Communicated via Augmented Reality: Implications for Human-Robot Teaming Safety.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2023). London, England, UK. PDF.
Acceptance Rate: 43%. -
Aaquib Tabrez*, Matthew B. Luebbers*, and Bradley Hayes. (2022).
Descriptive and Prescriptive Visual Guidance to Improve Shared Situational Awareness in Human-Robot Teaming.
In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022). Auckland, New Zealand. PDF. Video.
Best Student Paper Runner-Up (Top 2 of 629 submissions). Acceptance Rate: 26%. -
Matthew B. Luebbers, Connor Brooks, Carl L. Mueller, Daniel Szafir, and Bradley Hayes. (2021).
ARC-LfD: Using Augmented Reality for Interctive Long-Term Robot Skill Maintenance via Constrained Learning from Demonstration.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2021). Xi'an, China. PDF. Video.
Acceptance Rate: 48%.
Workshops, Symposia, & Posters
-
Matthew B. Luebbers and Bradley Hayes. (2024).
Explainable Guidance and Justification for Mental Model Alignment in Human-Robot Teams.
In Companion for the ACM/IEEE International Conference on Human-Robot Interaction (HRI Pioneers 2024). Boulder, Colorado, USA. PDF. -
Aaquib Tabrez*, Matthew B. Luebbers*, Kyler Ruvane*, Ashley H. Rabin, Kevin W. King, William Gerichs, and Bradley Hayes. (2024).
Hierarchical Multi-Agent Reinforcement Learning with Explainable Decision Support for Human-Robot Teams.
In Proceedings of the Workshop on Explainability for Human-Robot Collaboration (ExpHRC 2024). Boulder, Colorado, USA. PDF. -
Yi-Shiuan Tung*, Matthew B. Luebbers*, Alessandro Roncone, and Bradley Hayes. (2024).
Stereoscopic Virtual Reality Teleoperation for Human Robot Collaborative Dataset Collection.
In Proceedings of the Workshop on Virtual, Augmented and Mixed Reality for Human-Robot Interaction (VAM-HRI 2024). Boulder, Colorado, USA. PDF. -
Maciej K. Wozniak*, Max Pascher*, Bryce Ikeda*, Matthew B. Luebbers*, and Ayesha Jena*. (2024).
Virtual, Augmented and Mixed Reality for Human-Robot Interaction
In Companion for the ACM/IEEE International Conference on Human-Robot Interaction (HRI 2024). Boulder, Colorado, USA. PDF. -
Carl L. Mueller, Matthew B. Luebbers, Aaquib Tabrez, and Bradley Hayes. (2023).
Augmented Reality and Proxy Grippers Improve Demonstration-based Robot Skill Learning.
In Proceedings of the Workshop on Life-Long Learning with Human Help (L3H2 2023). London, England, UK. PDF. -
Breanne Crockett*, Kyler Ruvane*, Matthew B. Luebbers, and Bradley Hayes. (2023).
Effective Human-in-the-loop Control Handover via Confidence-Aware Autonomy.
In Proceedings of the Workshop on Life-Long Learning with Human Help (L3H2 2023). London, England, UK. PDF. -
Yi-Shiuan Tung, Matthew B. Luebbers, Alessandro Roncone, and Bradley Hayes. (2023).
Improving Human Legibility in Collaborative Robot Tasks through Augmented Reality and Workspace Preparation.
In Proceedings of the Workshop on Virtual, Augmented and Mixed Reality for Human-Robot Interaction (VAM-HRI 2023). Stockholm, Sweden. PDF. -
Maciej K. Wozniak*, Christine T. Chang*, Matthew B. Luebbers*, Bryce Ikeda*, Michael E. Walker*, Eric Rosen*, and Thomas Groechel*. (2023).
Virtual, Augmented, and Mixed Reality for Human-Robot Interaction (VAM-HRI).
In Companion for the ACM/IEEE International Conference on Human-Robot Interaction (HRI 2023). Stockholm, Sweden. PDF. -
Matthew B. Luebbers*, Aaquib Tabrez*, and Bradley Hayes. (2022).
Augmented Reality-Based Explainable AI Strategies for Establishing Appropriate Reliance and Trust in Human-Robot Teaming.
In Proceedings of the Workshop on Virtual, Augmented and Mixed Reality for Human-Robot Interaction (VAM-HRI 2022). Sapporo, Japan. PDF. -
Matthew B. Luebbers*, Christine T. Chang*, Aaquib Tabrez*, Jordan Dixon*, and Bradley Hayes. (2021).
Emerging Autonomy Solutions for Human and Robotic Deep Space Exploration.
In Proceedings of SpaceCHI: Human-Computer Interaction for Space Exploration (SpaceCHI 2021). Yokohama, Japan. PDF. Poster. -
Aaquib Tabrez*, Matthew B. Luebbers*, and Bradley Hayes. (2020).
Automated Failure-Mode Clustering and Labeling for Informed Car-To-Driver Handover in Autonomous Vehicles.
In Proceedings of the Workshop on Assessing, Explaining, and Conveying Robot Proficiency for Human-Robot Teaming. Cambridge, England, UK. PDF. Video. -
Matthew B. Luebbers, Connor Brooks, Minjae John Kim, Daniel Szafir, and Bradley Hayes. (2019).
Augmented Reality Interface for Constrained Learning from Demonstration.
In Proceedings of the Workshop on Virtual, Augmented and Mixed Reality for Human-Robot Interaction (VAM-HRI 2019). Daegu, South Korea. PDF. -
Matthew B. Luebbers, Ramchandran Muthukumar, Madeleine Udell, and Ross A. Knepper. (2017).
Planning Aerial Survey Missions using Low Rank Approximation.
Presented: Northeast Robotics Colloquium (NERC 2017). Boston, Massachusetts, USA.
Thesis
-
Matthew B. Luebbers. (2024).
Spatially-Grounded Communication for Mental Model Alignment in Human-Robot Teams
PhD Thesis: University of Colorado Boulder. Boulder, Colorado, USA. PDF.
Teaching
- CSCI 5302: Advanced Robotics.
University of Colorado Boulder, Fall '21. - CSCI 5722: Computer Vision.
University of Colorado Boulder, Spring '20. - CSCI 1300: Introduction to Computer Science.
University of Colorado Boulder, Fall '19. - CS 4700: Foundations of Artificial Intelligence.
Cornell University, Fall '17. - CS 3410: Computer Systems Organization and Programming.
Cornell University, Fall '16 - Spring '17. - CS 2110: Object-Oriented Programming and Data Structures.
Cornell University, Fall '15 - Spring '16.