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ABSTRACT
Effective communication is critical in human-robot teaming, sig-
nificantly impacting coordination and team fluency, especially in
uncertain environments. As part of this communication, providing
humans with a clear rationale for an autonomous system’s behavior
and suggestions can improve collaboration and safety in real-world
deployments. This work introduces a novel hierarchical multi-agent
reinforcement learning approach for coordinating actions within
human-robot teams, generating visual recommendations and expla-
nations for use within partially observable settings. Our proposed
approach enables robots to visually communicate their reasoning to
human teammates, facilitating the synchronization of environmen-
tal uncertainty and improving the interpretability of robot-supplied
recommendations. We apply this framework to a dyadic human
teaming scenario with robot-provided guidance, leveraging dy-
namic guidance to nudge participants towards localized roles of
leading or following, balancing measures of Granger leadership
to improve overall team performance and reduce workload. We
propose a set of algorithmic and user study evaluations to assess
the impact of the guidance generated by our approach on enhanc-
ing team dynamics, fluency, and transparency within multi-robot,
multi-human collaborative scenarios.
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1 INTRODUCTION AND MOTIVATION
In collaborative tasks within uncertain, dynamic environments,
effective communication is crucial for success. This is particularly
true in human-robot teams, where bridging the communication gap
between human intuition and robotic optimization can enhance
teamwork, leveraging the best of each agent and synchronizing
notions of uncertainty in partially observable domains [13, 14].
Autonomous agents are well-equipped to navigate probabilistic
state spaces, updating their models to select optimal actions in
the presence of new information. To facilitate coordinated actions
with humans, however, robots must be capable of sharing that
evolving knowledge with their human teammates, ensuring both
parties remain adaptable to changing conditions, maintaining a
synchronized understanding of uncertainties and strategies [15, 19].

Furthermore, previous research inmodel reconciliation and knowl-
edge sharing within human-robot teams underscores the value of
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explainability and synchronization of mental models for enhanc-
ing trust [18], transparency [4], and overall team efficacy [3, 16].
Tabrez et al. [20] introduced the MARS (Min-entropy Algorithm for
Robot-supplied Suggestions) framework, which combined a multi-
agent planning algorithmwith visual guidance provided to a human
teammate, allowing them to smoothly progress towards task com-
pletion alongside their robot collaborators. In this work, they found
that combining visual insights into environmental uncertainty with
explicit robot-provided action suggestions improved trust, trans-
parency, andmade human collaborators more independent. In a sub-
sequent work, they also showed that different guidance types given
by MARS have a psychological influence on human compliance
with action suggestions and how long humans spend scrutinizing
that guidance before making a decision [12]. The MARS framework
in these works was evaluated in relatively small, discrete domains,
and may face computational complexity issues when mapped to
large, continuous real-world environments. Furthermore, MARS
only supports a single guidance stream, limiting its usefulness to
assisting a single human within a multi-agent system.

In this work, we address these limitations, introducing a hier-
archical multi-agent reinforcement learning framework with ex-
plainable decision support that enables broader operationalization
for real-world domains. We additionally aim to investigate the use
of tailored visual communication to influence emergent human-
human team dynamics within multi-human, multi-robot teams,
thus reducing cognitive load and fostering a shared understanding
of complex tasks in continuous state spaces.

2 PRELIMINARY: MARS
Multi-Agent RL with Explainable Guidance.We utilize a multi-agent
planning algorithm for multi-goal search tasks under uncertainty
called MARS (Min-entropy Algorithm for Robot Supplied Sugges-
tions), introduced by Tabrez et. al. [20] as a baseline for our work. In
addition to producing robot policies, MARS generates proactive rec-
ommendations for human teammates, utilizing two complementary
modalities of visual guidance: prescriptive (directly recommending
actions) and descriptive (showing state space information to aid in
decision-making).

MARS represents uncertainty regarding the location of goals
within an environment with a dynamically-updating probability
mass function (PMF), a technique commonly used in search tasks
[5, 21, 22]. This PMF acts as a shared reward signal for parallel
Markov Decision Processes (MDPs): one for autonomous agents
(𝑀𝑅 ) and another for generating assistive guidance for the human
teammate (𝑀𝐻 ). MARS solves both MDPs via online reinforcement
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learning, continually updating the shared PMF in response to agent
observations.

Interaction Loop. MARS progresses in a cyclical fashion until all
objectives within the environment are achieved. First,𝑀𝑅 is solved
to obtain actions for autonomous agents, who act and gather new
observations, updating the PMF. The updated PMF is used to solve
𝑀𝐻 , and the resultant policy recommendation is communicated to
the human. In [20], this is done via an augmented reality-based vi-
sualization. The human then acts, recovering a local reward, which
updates the PMF again, which is used to again solve𝑀𝑅 , etc. (refer
to [20] for a more detailed algorithmic description).

Prescriptive & Descriptive Visual Guidance. MARS communicates
its visual guidance using a combination of twomodalities: the first is
‘prescriptive guidance,’ which directly suggests actions to humans
(such as holographic arrows for navigation), requiring minimal
mental effort but necessitating high trust in the system due to lack
of decision-making rationale. The second is ‘descriptive guidance’
which displays latent environmental information (such as a PMF
heatmap), enabling humans to make informed decisions with higher
cognitive effort, while offering more flexibility and transparency.

Limitations and Contribution.MARS is a promising framework
for integrating human teammates into complex multi-agent robot
planners for multi-objective navigation and search tasks, but suffers
from scalability issues when confronted with large numbers of
agents and high state counts, limiting its applicability for certain
real-world robotics domains. In this work, we introduce a spatial
hierarchy technique for visual explanation generation, allowing the
MARS framework to be tuned to tasks with arbitrary environment
size and spatial resolution requirements. We exploit the inherently
hierarchical nature of search tasks to transition between levels
of state and action abstraction depending on the phase of search,
allowing for planning at varying levels of detail (similar to how
humans naturally think about search) [1, 7]. This methodology
allows the MARS framework to be applied to a much broader class
of real-world search scenarios.

Currently, MARS supports single human-in-the-loop interaction,
with results showing that guidance type and content have a notice-
able effect on the thought patterns of human teammates. Namely,
we see that prescriptive guidance induces a passive, automatic,
System I [9] style of thinking, limiting adaptability to unexpected
changes or flawed recommendations. Conversely, descriptive guid-
ance engages users in active, analytical, System II thinking, en-
couraging them to plan and make decisions independently. In this
work, we extend MARS to manage multiple humans within a team,
moving beyond influencing individual human decision-making
to influencing emergent human-human team dynamics (such as
leader-follower roles) through the provision of tailored, differential
guidance. We leverage this novel framework to improve fluency and
efficacy of teams involving multiple robots and multiple humans.

3 APPROACH
In this section, we describe our novel hierarchical multi-agent rein-
forcement learning planner. The novelty of this algorithm is twofold
compared to the previous state of the art MARS algorithm in [20]: 1)
it introduces a hierarchical structure capable of reasoning over arbi-
trary environments, which not only makes it scalable to real-world

Figure 1: Results of graph partition on 2-dimensional pro-
jection of an experimental environment. In this example,
the environment is divided into approximately 10,000 grid
squares (3m x 3m each), grouped into 100 regions, with im-
passible obstacles rendered in white.

applications, but also enhances the interpretability of guidance
[1, 7], and 2) it can provide multiple streams of guidance, expand-
ing its use to multi-human, multi-robot teams.

3.1 Hierarchical MARS Algorithm
At a high level, the hierarchical algorithm functions similarly to
MARS as described in [20]. We call this new algorithmH-MARS (Hi-
erarchical Min-entropy Algorithm for Robot-supplied Suggestions).
Human and robot Markov Decision Processes (MDPs), encoding
the heterogeneous goals and capabilities of each agent class, are
solved via online reinforcement learning to generate actions for
robot agents and action suggestions for human agents, using a
shared, dynamically updating state-wise probability mass function
(PMF) to synchronize a notion of likely goal locations between all
agents. The algorithm differs, however, in the addition of the ability
to group together low-level states into a smaller number of larger
regions. H-MARS is capable of dynamically switching between lev-
els of state space abstraction for providing its actions and guidance:
considering the entire environment with regions as states, or con-
sidering a single region with low-level discretized states (e.g., grid
squares). The concept is inherently recursive, and can be extended
beyond two levels of spatial resolution: for example, an environ-
ment could be divided into regions, which are themselves divided
into sub-regions, which are divided into individual states.

To obtain these regions, we discretize our environment into a grid
of a desired spatial resolution, and form a graph with grid squares
as nodes and edges connecting adjacent, traversable nodes. We
then run the METIS graph partition algorithm [10] over this graph,
producing contiguous regions of reachable states. To optimize for
computational efficiency when running the algorithm in real-time,
the number of regions produced should roughly equal the nth root
of the total number of states in the environment (for a desired n-
level hierarchy). By considering an equal number of states in each
phase, the complexity of the combined computation is minimized,
reaching a state of Pareto-optimality [2]. An example of this can
be seen in Fig. 1, where an environment of 10,000 discrete states is
programmatically divided into 100 regions. Assuming a two-level
hierarchy, the algorithm progresses through three phases for each
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time-step, corresponding to swapping the state space, action space
and reward function input to MARS between levels of abstraction:

Phase 1 (Local Window Search): The algorithm first considers
individual states within a limited distance of each agent. This is to
avoid edge cases that would arise by starting Phase 2, involving
potentially high-reward actions taking agents to physically nearby
states that happen lie across a region boundary. By considering
these actions first, we avoid the situation where they receive an
outsized reward penalty, normally given to represent the time taken
to travel to a separate region.

Phase 2 (Inter-Regional Search): If the tuned reward threshold
within Phase 1 is not passed, the algorithm moves on to consider-
ing entire regions as single states, with the state-wise PMF used
to calculate the expected number of targets to be found per region.
The algorithm decides whether it is preferable to stay and search
within the current region, or travel to a new, more target-rich re-
gion, considering the added movement penalty for taking the time
to travel to a separate region, proportional to that region’s distance
from the current region. If the algorithm decides an agent should
move regions, it commands actions or provides action recommen-
dations that path the agent to the nearest edge of the new target
region. If the algorithm decides to stay within the current region, it
progresses to Phase 3.

Phase 3 (Intra-Regional Search): The hierarchical MARS algo-
rithm now moves to consider the states within an individual region
for calculating optimal agent actions, utilizing the PMF value of
states in reward calculations, identical to the state space, action
space, and reward function of MARS as described in [20]. The
phases are repeated every time the global PMF updates in response
to the accumulation of agent observations.

4 PROPOSED EVALUATION
We plan to validate the utility and applicability of our Hierarchical
MARS framework through a series of algorithmic and user study
evaluations. The algorithmic evaluation will measure the empirical
scalability of our planner compared to MARS, as well as a state
of the art traditional planner. Next, we will evaluate the quality
of guidance generated by our planner in an expert feedback user
study. Lastly, we plan to assess the impact of our guidance on
team performance and emergent leader-follower dynamics in a
human dyadic search task conducted in a realistic 3D simulation
environment. The environment, implemented in Unreal Engine,
offers a large state space and level of realism more comparable to
those found in real-world search tasks.

4.1 Algorithm Evaluation
We plan to evaluate the H-MARS algorithm’s ability to handle large
state spaces by conducting simulation episodes of a multi-objective
collaborative search task, with simulated human agents following
the system’s guidance. Our evaluation will include a comparison
of 1) Hierarchical MARS (H-MARS), 2) MARS, as described in [20],
and 3) Limited Horizon Multi-objective A* [12], in environments
of varying sizes. We hypothesize that H-MARS will demonstrate
significantly faster computation times than MARS, particularly as
the number of states in the environment increases. Additionally,
we hypothesize that H-MARS will outpace Multi-objective A* in

Figure 2: Left: H-MARS descriptive guidance (PMF), coloring
each state according to its probability of containing a goal
(dark purple to bright yellow). Right: H-MARS descriptive
guidance, applied to regions rather than individual states.
Heatmap coloring corresponds to the expected number of
goals within each region.

terms of task performance metrics, such as the number of targets
identified within a specific time frame.

4.2 Guidance Evaluation
We propose modifying the visual guidance provided by MARS to
leverage the hierarchical phases of the H-MARS more effectively.
Our primary insight is that visualizing the PMF in extensive envi-
ronments with numerous states can overwhelm users (Fig. 2 Left).
Additionally, previous research in human navigation shows that
users tend to simplify and scaffold complex environments hierar-
chically [7, 17]. To address both of these criteria, we propose a
dual visualization strategy. During Phase 2 (inter-regional search)
of the algorithm, we will display a heatmap over regions rather
than individual states, using colors to indicate the expected number
of goals within each region (see Fig. 2 Right). Prescriptive arrows
will then guide users to the boundary of the targeted region. For
Phases 1 (local window search) and 3 (intra-regional search), the
visualization will focus solely on the PMF of states near the user’s
current location, presented as a heatmap with prescriptive arrows
directing towards a specific target state. By limiting the number of
states users need to focus on, regardless of the phase, we expect
the guidance to significantly enhance real-time decision-making.

To evaluate our approach to guidance, we plan on conducting
an expert-feedback case study (similar to [12]), where participants
watch video of a collaborative search task with one of four descrip-
tive guidance types: 1) individual state PMF, entire environment, 2)
regional PMF, entire environment, 3) individual state PMF, limited
horizon, 4) our dynamic PMF, switching between types 2 and 3 as
the MARS algorithm calls for each. We hypothesize the dynamic
PMF will rate significantly better than other guidance types on
subjective measures of workload, interpretability, and usefulness
for decision-making.

4.3 Leader-Follower Evaluation
4.3.1 3D Simulation Environment. Wewill implement our improved
MARS framework in a 3D collaborative mine-defusing simulation
environment, implemented in Unreal Engine (Fig. 3). The environ-
ment is far larger than the environment used in the Minesweeper
game from [20], both in terms of state count (∼40,000 compared
with 45) and physical area (∼360,000 square meters (or ∼89 acres)
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Figure 3: Screenshot from the experimental 3D simulation
environment. Here, prescriptive guidance from H-MARS is
provided in the form of a green path projected onto the min-
imap and the environment itself, leading the participant to
an undefused mine (circled in red).

compared with ∼100 square meters). Unlike the grid-world style
‘up, down, left, right’ action space from the Minesweeper game,
this environment allows participants to move freely throughout a
cluttered urban environment, searching visually for mines, with
drone teammates providing assistance to speed up the process.

Prescriptive guidance (arrows) will be overlaid onto the 3D game-
play environment, mimicking the augmented reality visualizations
developed in [20], as well as shown on a top-down minimap in the
corner of the screen, emanating from the player’s location (see Fig.
3). Descriptive guidance will be shown on the minimap as well, in
heatmap form similar to what is visualized in Fig. 2.

The experimental task within the simulation environment will
require human dyads, in order to measure human-to-human team
dynamics. Instead of a single player defusing a mine, as in the
Minesweeper domain from [20], the game will require both human
teammates to enter a radius around a mine at the same time and
jointly take defuse actions to progress. These dynamics are drawn
from the experimental task in King et al. [11].

4.3.2 User Study. Using this 3D simulation environment, we plan
on conducting a human-subjects study to demonstrate the ability
of differential guidance to affect human team dynamics. For this
study, wewill recruit individual participants to playmultiple rounds
of the dyadic mine defusing game with a research confederate
teammate (playing from a separate room to minimize external
sources of interference that could affect team functioning, such as
conversation or eye contact). The confederate will be given simple
instructions to keep gameplay regular between trials (i.e., always
to follow the system guidance except to diverge when the location
of a mine is confirmed visually).

From the experimental analysis of [11], King et al. find that by
labeling the members of otherwise unstructured human dyads as
‘leader’ and ‘follower’ in real time (as determined by applying the
concept of Granger causality to measure which member’s trajectory
tends to follow the other [6], producing a measure called Granger
leadership [11]), the teammate currently leading can be measured
through physiological signaling to be significantly more engaged in
the task and expending more mental effort than the follower team-
mate. Relatedly, the experiment finds that equalizing leadership

time between teammates enhances team performance, as it keeps
both members actively engaged, while alternating roles reduces
mental fatigue by giving each teammate a chance to rest when
occupying a less active follower role.

The primary goal of our experiment is to demonstrate that by
switching the guidance type provided by an autonomous decision-
support system, human teammates in a dyad can be nudged towards
‘leader’ or ‘follower’ roles, and that by judiciously switching guid-
ance types per teammate throughout an experimental round, team
performance can be enhanced and overall workload reduced. We
plan on running three conditions in a within-subjects design, with
randomized and counterbalanced ordering of conditions and ran-
domized mine locations between rounds.

Condition 1: Human participant has access to both descriptive
(heatmap) and prescriptive (arrow) guidance; confederate has access
to prescriptive (arrow) guidance.

Condition 2: Human participant has access to prescriptive (ar-
row) guidance; confederate has access to both descriptive (heatmap)
and prescriptive (arrow) guidance.

Condition 3: Both the participant and the confederate have
access to dynamic guidance, with the provision of descriptive guid-
ance (heatmap) switching between teammates via an algorithm
that attempts to balance the time spent with each guidance type
while conducting guidance switches at minimally distracting times.

We hypothesize that the time periods when the human partici-
pant has access to descriptive (heatmap) guidance in Conditions
1 and 3 will be associated with a significantly higher likelihood of
measuring the participant as leading via the Granger leadership
metric compared with the times when the human participant only
has prescriptive (arrow) guidance in Conditions 2 and 3, showcas-
ing the effect guidance type has on team leader-follower dynamics.
We also hypothesize that Condition 3 will outperform Conditions 1
and 2 on task performance (the number of mines defused within
the time window) and subjective measures of team fluency and
contribution to team success by all teammates [8], and hypothe-
size that participants will report Condition 1 as having the highest
workload, followed by Conditions 2 and 3.

5 CONCLUSION
In this work, we present a novel hierarchical multi-agent rein-
forcement learning approach for partially-observable multi-agent
collaborative tasks, called H-MARS. This approach builds on and
improves the utility of previous similar approaches [20] by adopt-
ing a spatially hierarchical RL structure, making it applicable to
large, continuous state spaces. H-MARS informs the generation
of visual guidance and explanations, providing human teammates
with insight into environmental uncertainty and allowing them
to leverage guidance to make informed decisions. We propose a
series of algorithmic and user study evaluations to validate our
framework, including a dyadic human search task, where robot
guidance provided by H-MARS will be used to nudge human team-
mates towards ‘leader’ or ‘follower’ roles. The nudging is achieved
by strategically switching guidance types per teammate throughout
the task, aiming to balance measures of Granger leadership [11]
and thus improve team performance and reduce overall workload.
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