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Abstract— Human memory of a robot’s competence, and
resulting subjective perceptions of that robot, are influenced by
numerous cognitive biases. One class of cognitive bias deals with
the ordering of items or interactions: information presented last
among a grouping is most salient in memory formation (recency
bias), followed by information presented first (primacy bias),
followed by information in the middle, collectively known as the
serial-position effect. For example, if a human’s last observation
of a robot involves a task failure, this will disproportionately
negatively alter their perception of the robot’s competence, as
well as their trust in the robot moving forward. It is valuable
to characterize the effect of these biases within human-robot
interactions to inform strategies for risk-aware planning that
cultivate appropriate levels of human trust. We conducted a
human-subjects study (n=53) testing the influence of the serial-
position effect on recalled competence (see overview at https:
//youtu.be/BgH2zhh1s48). Participants viewed videos of a robot
performing the same tasks at the same level of competence,
with task order differing by experimental condition (rising
competence, falling competence, or failures at the midpoint),
asking participants to rate robot competence in between every
video as well at the very end of the experiment. We found that
while the average between-video rating of robot competence
remained stable across conditions, the recalled, post-experiment
ratings of competence and trust were significantly lower in the
condition with decreasing competence than in either of the other
two conditions, suggesting a notable recency bias. We conclude
with implications for human-subjects experiment design (i.e.,
how subjective measures are influenced by ordering effects) and
provide design recommendations to minimize them. We further
discuss practical applications of these results in creating risk-
aware robotic planners capable of trust calibration.

I. INTRODUCTION

Human recall of events and experiences is subject to the
influence of various cognitive biases. Specifically, individuals
have a tendency to simplify their memories, selectively
retrieving significant aspects of an interaction to make snap
judgments, in accordance with mental shortcuts like the
representativeness heuristic [14]. The particular behavioral
patterns that stem from this process are known as memory
biases. One such bias is the serial-position effect [3], ac-
cording to which individuals tend to systematically recall
the latest items or interactions in a series the best (recency
bias), followed by the earliest items or interactions (primacy
bias), followed by all interactions in the middle.

In this work, we hypothesize that human perception of a
robot’s competence is strongly influenced by the ordering
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Fig. 1: We conducted an online human-subjects study where
participants viewed videos of a robot performing the same
tasks at the same level of competence in three distinct
orderings, depending on their assigned condition: rising
competence (involving early task failure), midpoint failure,
and falling competence (with late failure). We found that
participants recalled the robot as being significantly less com-
petent and trustworthy in the falling competence condition
compared to the other two conditions, indicating the presence
of a recency bias on those subjective perceptions.

of their interactions with that robot, in accordance with the
relative importance of late, early, and middle interactions in-
dicated by the serial-position effect. That is, when individuals
interact with a robot performing the same tasks, at the same
level of competence, the order in which sequences of robot
success and failure occur will alter their post-hoc rating of
robot competence, with what they saw at the end having the
biggest impact, followed by what they saw at the beginning.

An individual’s perception of a robot holds implications
not only for their immediate interaction with that robot, but
also for its usage and deployment in future scenarios [18]. We
posit that memory biases would not only impact a human’s
recalled rating of robot competence, but will also impact
related measures of the robot’s trustworthiness. If a robot
is perceived as incompetent and error-prone, it is less likely
to be trusted in the future, potentially leading to negative
outcomes in critical situations [17]. Conversely, if a robot is
perceived as highly competent and capable, collaborators are
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more inclined to rely on it, leading to increased utilization
moving forward. This highlights the practical implications of
interaction ordering - even if a robot’s level of competence
remains consistent on average, the timing of robot activities
more or less prone to failure will significantly alter trust in
that robot going forward if they are placed at the beginning
or end of the interaction.

This phenomenon has implications for how user studies
are conducted within human-robot interaction (HRI) re-
search. Many user studies rely on post-hoc subjective mea-
sures to assess participants’ perceptions of robot performance
and trustworthiness, which have the potential to be influenced
by memory biases. It is therefore important to take these
biases into account when designing user studies aimed at
measuring human perceptions of robots, and take appropriate
counter-measures if necessary. We present the following
contributions:

• A human-subjects study design to test for the existence
of recency and primacy effects on participant-recalled
ratings of robot competence and trustworthiness.

• Analysis with statistical evidence showing that task
failures at the end of an interaction result in lower post-
experiment ratings of competence and trust, despite the
robot having performed the same tasks at the same over-
all level of competence as other conditions, indicating
the presence of a recency bias (Fig. 1).

• A set of HRI user study design strategies for mitigating
the effect of ordering biases in subjective measures.

• Strategies to incorporate knowledge of ordering biases
into robot planners to deliberately calibrate a human’s
trust in a robot.

II. RELATED WORK

Cognitive and Memory Biases in Psychology. Humans
rely on a variety of mental shortcuts, known as heuristics,
to ease the cognitive load of decision-making. Although
these heuristics are not always rational or optimal, they
assist individuals in problem-solving and forming judgments
about events. Herbert Simon first introduced the concept of
‘satisficing’, wherein people accept choices, solutions, and
judgments that meet an acceptable quality threshold for their
practical purposes, despite their suboptimality [27].

Similarly, recall of past events and experiences is in-
fluenced by processes of mental simplification, governed
by known patterns hard-wired by evolution and measurable
through experiment, known as memory biases [15]. Memory
biases selectively enhance or impair the recall of specific
memories, including the likelihood of the memory being
recalled at all, the time it takes to recall it, or the degree
to which it is altered when recalled [31]. Many of these
biases were discovered through experiments involving free
recall tasks, wherein participants study a list of items and
are prompted to recall the items in any order [23]. One such
memory bias is the serial-position effect, wherein people tend
to recall the last items of a series or list the best, followed
by the first items of a series, and lastly, items in the middle
[3]. These sub-effects are known as the recency bias (the

tendency to disproportionately recall the last items of a list),
and the primacy bias (the tendency to disproportionately
recall the first items of a list).

This effect has also been examined in persuasive commu-
nication studies, where the order of information presentation
influences the formation of opinions [16]. Smith et al. tested
the impact of ordering effects on the assessment of sports
ability [28]. Participants watched a video of an ultimate
Frisbee player demonstrating skills presented in ascending
or descending order of ability, and made assessments of the
player’s overall ability. The researchers found the presence of
a primacy effect when assessments were made at the end of
the video, but not when assessments were made after watch-
ing each skill. Similarly, Garnefeld and Steinhoff conducted a
study on the impact of ordering effects on customer satisfac-
tion with hypothetical hotel stays [8]. Participants received
daily descriptions of their stay with differing sequences of
positive, negative, and neutral experiences. The study found
that the timing of positive and negative events had an effect
on customer satisfaction, with a recency effect for negative
events and a primacy effect for positive events.

Cognitive biases such as these have been extensively ap-
plied in marketing, UI/UX design, health care, customer ser-
vice, and policy recommendation [29]. They are leveraged in
UI/UX design for creating easy to use interfaces and improv-
ing engagement metrics [33], or in medicine for designing
patient interactions during potentially painful procedures that
are remembered more favorably after the fact [19]. Closely
related to the serial-position effect, a phenomenon known
as the peak-end effect is used prominently for this purpose,
in which memories of experiences are disproportionately
influenced by the most intense point (the “peak”) and the end
of the experience [7]. Deliberately reordering certain painful
or painless portions of medical procedures like colonoscopies
according to the peak-end effect has been shown to lead
patients to rate the entire experience as being less painful
overall [13].

Cognitive Biases and Human-Robot Interaction. Cognitive
biases also influence how humans interact with robots. For
instance, anthropomorphism bias is often seen in HRI, with
participants rating robots with human-like characteristics
more favorably [24]. Similarly, people prefer to render assis-
tance to robots that are similar in appearance and perceived
personality to themselves, rather than ones best suited for that
task [30]. Framing bias has been demonstrated in language-
enabled robots, with positive framing in robotic communica-
tion leading to more favorable perceptions of the robot [25].
There is also some evidence of memory bias in HRI, with
first impressions found to significantly influence trust in a
robot’s advice, even after observing the robot malfunctioning
later in the interaction [34].

Memory biases have significant implications for how user
studies are conducted in HRI research. Desai et al. inves-
tigated the impact of changing reliability on the trust of
robot systems and control allocation strategies [5]. The study
found that trust was affected by drops in robot reliability,
with mode-switching behavior (voluntarily taking control of



the robot) becoming more frequent as reliability dropped.
Though the study showed slightly higher likelihood for
mode-switching when the reliability dropped in the middle
or later stages of runs compared with the beginning, the
effect did not have statistical power. The authors extended the
work further, comparing conventional post-run trust survey
approaches to periodic polling on trust at regular intervals,
showing that live trust falls precipitously following drops
in reliability, and slowly climbs as the robot performs well
[4]. Our work aims to isolate the measurable effects of
ordering biases as they relate to impressions of a robot’s
competence, and resultant trust in the robot. Furthermore,
our research offers techniques to both mitigate these effects
when designing user studies in HRI in order to obtain more
accurate results, as well as leverage them for trust calibration
in practical HRI scenarios.

III. METHODOLOGY

We conducted an IRB-approved, online human-subjects
study to investigate the role of ordering biases on perception
of robot competence and trustworthiness in HRI scenarios.

A. Experimental Task: Kitting

For our experimental evaluation, we adopted a robotic
kitting task similar to the task presented by Tung et al. [32].
While traditional kitting involves preparing and grouping
necessary parts and tools into predefined collections or
“kits” for later assembly in a manufacturing environment,
autonomous kitting allows for additional flexibility in as-
sembly while keeping storage space requirements low and
worker productivity high [32]. We chose this task because it
satisfies two design criteria. First, it is a validated application
with relevance to the human-robot interaction community.
Second, it is important for participants to be able to easily
comprehend robot success or failure by watching it conduct
its tasks, forming judgments about its competence.

Robotic Platform. For our experiment, we used a Sawyer
robotic manufacturing arm. The Sawyer robot was tasked
with aiding an unseen human worker in the assembly of
a small flat-pack furniture table by delivering the required
parts to the human. Specifically, Sawyer attempted to pick
up various parts and transport them to the target bin, forming
kits for delivery to the human. These delivery tasks were
filmed and shown to participants as videos to keep the robot
competence consistent between trials.

Table Assembly. We divided the entire delivery process
needed to assemble the flat-pack furniture table into six sub-
tasks, as outlined in Table I. Each sub-task was performed
by the Sawyer robot at varying levels of competence, and
the videos of the sub-tasks were ordered according to the
experimental condition. We defined three levels of compe-
tence for the robot: (1) Success, in which all required parts
for the task were successfully retrieved and delivered; (2)
Partial Success, in which a subset of the required parts were
retrieved and delivered; and (3) Failure, in which none of
the required parts were retrieved and delivered.

B. Experimental Design
To evaluate the presence of ordering biases in perceptions

of robot competence and trustworthiness, we conducted an
online video study using the Prolific platform (prolific.co).
The study employed a 3x1 between-subjects design, in
which participants viewed six different videos of the Sawyer
robot performing individual sub-tasks (attempting to pick up
specified parts from a table and deliver them to a target
bin, shown in Fig. 2). Two of the sub-task videos were
designed to be successful, two partially successful, and two
failing. Participants were randomly assigned to one of three
conditions, determining how the six videos were ordered:

• Rising Competence Condition: The 6 sub-task videos
were ordered in ascending order of competence, starting
with two failures (F1, F2), then two partially successful
tasks (P1, P2), and ending with two fully successful
tasks (S1, S2); (order: F1, F2, P1, P2, S1, S2).

• Midpoint Failure Condition: The 6 sub-task videos
were ordered with a negative peak in the middle, starting
with a successful task, followed by a sharp decrease to
failure and then a sharp increase back to a successful
ending task; (order: S1, P1, F1, F2, P2, S2).

• Falling Competence Condition: The 6 sub-task videos
were ordered in descending order of competence, start-
ing with two fully successful tasks, then two partially
successful tasks, and ending with two failed tasks;
(order: S1, S2, P1, P2, F1, F2).

Fig. 2: Left: the experimental task setup. The Sawyer robot
attempts to move construction components from the left of
the table into the blue bin on the right, pushing the bin
forward to deliver it to the human. Right: the components
Sawyer can deliver as part of its sub-tasks.

C. Hypotheses
Isolating the individual components of the serial-position

effect, we evaluate the following hypotheses regarding hu-

Sub-
Task

Components
Required

Components
Retrieved

Competence
Level

1 1x Dowel + 1x
Small Screws

1x Dowel + 1x
Small Screws

Success (S1)

2 3x Foot 3x Foot Success (S2)
3 1x Top + 1x Large

Screws
1x Large Screws Partial Success

(P1)
4 3x Top 2x Top Partial Success

(P2)
5 3x Dowel Nothing Failure (F1)
6 1x Foot + 1x Nuts Nothing Failure (F2)

TABLE I: Description of experimental sub-task videos. The
ordering of videos 1 - 6 varies by experimental condition.



Fig. 3: Top: Expected patterns of rated robot competence per
sub-task per condition, consisting of successes (7 on a 1-7
Likert scale), failures (1 on a 1-7 Likert scale), and partial
successes with an intermediate rating. Bottom: Measured
ratings of robot competence per sub-task per condition.

man recalled perception of robot competence and trustwor-
thiness with our experiment:

• H1: Recency Bias Hypothesis: Participants’ recalled
perception of robot competence and trustworthiness will
be lower in the ‘Falling Competence’ condition than
in the ‘Midpoint Failure’ condition. This is because,
though both conditions start the same, negative events
at the end of an interaction are likely to have an outsized
effect on memory.

• H2: Primacy Bias Hypothesis: Participants’ recalled
perception of robot competence and trustworthiness will
be lower in the ‘Rising Competence’ condition than
in the ‘Midpoint Failure’ condition. This is because,
though both conditions end the same, negative events at
the start of an interaction are likely to have an outsized
effect on memory.

• H3: Serial-Position Hypothesis: Participants’ recalled
perception of robot competence and trustworthiness will
be lower in the ‘Falling Competence’ condition than
in the ‘Rising Competence’ condition. This is because,
within the serial-position effect, recency bias is stronger
than primacy bias.

D. Study Protocol

The experiment was administered online in several batches
with randomly assigned conditions using the Prolific plat-
form to crowdsource participants. To ensure higher partici-
pant quality, we filtered for those who had both completed
at least 100 approved studies on Prolific and possessed an
approval rate of 95% or higher. Upon providing informed
consent, participants were given a description of the Sawyer
robot and the kitting task, with pictures of all the required
parts for the Sawyer to deliver. Participants then watched
a series of six videos, each showcasing an individual sub-
task (see Table I), with order depending on their assigned
experimental condition. After each video, they were asked a
comprehension question related to the video to assess atten-
tion, followed by a post-video survey gauging impressions

of robot competence in the video they just watched.
After watching all six videos and completing the post-

video surveys, participants completed a brief memory-
matching distractor task to provide a clear boundary be-
tween the experimental task as a whole (and the associ-
ated between-video questions) and the final survey asking
for post-hoc recalled perceptions of the robot, moving the
experiment from active memory to recall. The final survey
consisted of a combination of Likert scale, free response,
and demographic questions. The Likert scale questions were
designed to measure participants’ attitudes and perceptions
towards the Sawyer robot after the entire interaction had
concluded, a common subjective data collection practice in
human-robot interaction research.

E. Measurement

We recruited 54 participants (25 male, 24 female, 4
nonbinary, 1 non-specified) through the Prolific platform,
with an age range of 19 to 69 years old (M = 38.64, SD
= 14.80). 15% of participants reported working in a STEM
field, and 51% of participants reported having received a
bachelor’s degree or higher. Although we gathered data from
all participants (18 per condition), one participant’s data
was removed from analysis as they failed both the video
comprehension check and survey attention check questions.

We utilized multiple subjective measures to evaluate our
hypotheses. We administered two sets of questionnaires:
short, post-task questionnaires after each video asking indi-
vidual questions about robot competence, and a longer, post-
experiment questionnaire administered after watching every
video, containing questions corresponding to the post-task
questionnaire items, as well as additional sets of questions
developed using established scales from HRI literature, such
as the Trust in Automation Survey [12], Trust Perception
Scale-HRI [26], Positive Teammate Traits [10], and Robotic
Social Attributes Scale (RoSAS) [1]. Based on the responses
to these questionnaires, we identified two relevant concepts
to validate our hypotheses: Competence and Trust.

To isolate these concepts, we conducted a principal com-
ponent analysis using the scales mentioned and calculated
the factor loading matrix using varimax rotation. We selected
items that could be combined to create concept scales with
a correlation cutoff of r ≥ 0.6 to the factor matrix [11]. The
resulting scales are presented in Table II.

TABLE II: Subjective scale measure items.

Competence (Cronbach’s α = 0.92)
1. Sawyer was competent at completing its tasks.
2. I can rely on Sawyer to correctly perform its tasks.
3. Sawyer was efficient at performing its tasks.
4. I feel confident that Sawyer is competent at performing its tasks.
5. Sawyer was dependable.
6. Sawyer was incompetent in performing its tasks. [inverted scale]
7. Sawyer failed to complete its tasks regularly. [inverted scale]
Trust (Cronbach’s α = 0.82)
1. I trust that Sawyer will perform its tasks successfully.
2. Sawyer was trustworthy.
3. Sawyer was committed to its tasks.
4. Sawyer was capable of performing its tasks successfully.
Likert items are coded as 1 (Strongly Disagree) to 7 (Strongly Agree)



IV. RESULTS

We analyzed the between-video and post-experimental
survey responses to test our hypotheses. For comparisons of
results between conditions, we utilized a one-way analysis
of variance (ANOVA) with experimental condition as a fixed
effect. Post-hoc tests used Tukey’s HSD to control for Type
I errors in comparing results across conditions.

The ANOVA revealed a significant effect for the post-
experimental Competence scale described in Section III
(F(2,50) = 4.24, p = 0.020). Post-hoc analysis with Tukey’s
HSD revealed that participants recalled the robot as being
significantly less competent in the falling competence condi-
tion (M = 2.01) compared with both the rising competence
(M = 2.93), p = 0.032 and midpoint failure conditions (M =
2.88), p = 0.045 (Fig. 4 left). This indicates the presence of a
recency bias, since the condition with low performance at the
end of the interaction was recalled as being more competent
than either condition with high performance at the end.

Significant differences were identified from the ANOVA
comparing conditions on the Trust scale (F(2,50) = 4.62, p
= 0.014). Post-hoc analysis showed the same pattern, with
participants trusting the robot less post-experiment in the
falling competence condition (M = 2.59) compared with both
the rising competence (M = 3.68), p = 0.027, and midpoint
failure conditions (M = 3.65), p = 0.032 (Fig. 4 right). This
highlights the correlation of recalled robot competence with
trust in the robot’s ability to perform looking forward.

Fig. 4: Average scores per condition for the post-
experimental Competence (left), and Trust (right) scales.

Since recalled robot competence and trustworthiness were
both higher in the midpoint failure condition compared to the
falling competence condition, we can validate Hypothesis
1 and demonstrate the existence of a recency bias in these
recalled measures. Since the same measures yielded no
significance for the midpoint failure condition compared to
rising, Hypothesis 2 is inconclusive with no direct evidence
found showing a primacy effect. Lastly, since the rising
condition also outperformed the falling condition, we can
additionally validate Hypothesis 3, showing the observed
recency bias to be stronger than any potential primacy bias.

We also analyzed the difference between participants’
average response to the six between-video Likert-scale ques-
tions stating “I think Sawyer performed its task competently
in the video I just watched,” and the post-experimental

Likert-scale question stating “Sawyer was competent at
completing its tasks.” Within each condition, for comparing
between-video competence and post-experiment (recalled)
competence, we utilized a one-tailed t-test, testing whether
the recalled competence rating is significantly lower than the
average of between-video competence ratings.

Showing alignment with our other findings, we found that
only the falling competence condition showed a significant
dropoff, with the average between-video rating for falling (M
= 3.61), being significantly higher than the average recalled,
post-experiment rating for falling (M = 2.18), p < 0.0001.
No effect was found between the average between-video
rating for midpoint failure (M = 3.73) and its recalled rating
(M = 3.56), or the average between-video rating for rising
competence (M = 3.46) and its recalled rating (M = 3.44), as
shown in Fig. 5. This reinforces evidence of a recency bias.

We additionally compared the average between-video and
recalled ratings of competence independently using one way
ANOVAs, with experimental condition as a fixed effect.
Comparing the between-video ratings of each condition
yielded no significant differences. Comparing the recalled
ratings, however, did show significant differences (F(2,50) =
6.93, p = 0.0022). Post-hoc analysis shows that, similarly
to the competence and trust scales shown in Fig. 4, scores
on the post-experimental question “Sawyer was competent at
completing its tasks.” were significantly lower in the falling
competence condition (M = 2.18) compared with both the
rising competence (M = 3.44), p = 0.0089, and the midpoint
failure conditions (M = 3.56), p = 0.0041. These results are
also shown in Fig. 5.

Fig. 5: Average scores per condition for the six between-
video questions asking “I think Saywer performed its task
competenty in the video I just watched” (left), and average
scores for the post-experimental question “Sawyer was com-
petent in completing its tasks” (right).

Result Synopsis: These results serve to reinforce the ev-
idence for a recency bias in perceptions of robot compe-
tence. They also demonstrate that obtaining this measure at
regular intervals rather than at the end of an interaction can
counteract that recency bias, as the three conditions led to
similar between-video rated competence, an objectively more
accurate result than the recalled competence scores since the
robot performed the same tasks in each condition at the same
level of competence (see https://youtu.be/BgH2zhh1s48).

https://youtu.be/BgH2zhh1s48


V. DISCUSSION AND TAKEAWAYS

We describe the implications of our experimental findings
for HRI regarding the serial-position effect across two broad
categories: experimental design and practical applications.

A. Experimental Design Recommendations

Our findings on ordering effects have practical implica-
tions for the design of HRI user studies. Here, we sum-
marize key takeaways from our results that researchers
should consider when designing HRI experiments, discuss
the potential consequences of overlooking these effects, and
provide recommendations for mitigating them.

Recency Bias: Due to recency bias, negative interactions
that occur towards the end of an experiment will lead to
an outsized negative impact in participant perception and
subjective ratings of a robot across multiple measures. For
example, if a study requires a robot to experience failures
at some point, those failures occurring at the end would
likely overload post-experimental subjective measures. To
mitigate this effect, care should be taken to deliberately ex-
tend experimental interactions beyond such failures, ensuring
that the interaction does not end on an atypical note (as is
done in medical procedures like colonoscopy or lithotripsy
[13]). Although our study did not confirm a primacy effect,
related research has shown that positive first impressions
during the early stages of an experiment can significantly
positively influence participant attitudes [8]. When designing
study scenarios, researchers should be cautious of a possible
primacy effect and similarly avoid atypical interactions at
the beginning of the experiment if they anticipate it having a
significant impact on participants’ perceptions of the robot.

Minimizing Memory Biases: In order to counteract order-
ing bias, even in scenarios where abnormal interactions at the
beginning or end of an experiment are needed, researchers
may consider obtaining periodic subjective measurements
throughout the interaction and averaging them. Our results
suggest taking measurements after sub-interactions within
a larger experimental interaction will provide higher mea-
surement accuracy. This approach, however, can lead to
counterproductive effects of participant boredom or fatigue if
repeated survey instruments are administered too frequently.
Adopting a “wash-out period” (increasing the time between
participants’ observations of major events) can also mini-
mize memory bias [22]. However, this method necessitates
lengthier experimental designs.

B. Practical Applications for HRI

The serial-position effect can be incorporated into risk-
aware robotic planners in order to modulate user perception.
Such planners could take the potential negative perception of
risky actions into account while optimizing task performance.
By adding a biasing factor to the robot’s cost function,
which assigns higher costs to actions that have a higher
probability of leading to potential failures if they occur
at the beginning or end of an interaction, the robot could
automatically schedule its tasks to mitigate any negative
primacy or recency biases and better highlight its successes,

in domains such as in collaborative assembly [32] or social
navigation [21]. If a failure does occur, the robot can
artificially extend its interaction with a human beyond the
failure to minimize its impact. This process is not limited to
deliberately improving impressions of a robot’s competence -
it can also deliberately degrade such impressions by inverting
the biasing factors. This capability is potentially useful for
another critical application within HRI: trust calibration.

A crucial aspect of human-robot collaboration is a robot’s
ability to establish, develop, and calibrate trust over extended
periods of time [2], [17]. It is suboptimal when a human fails
to use a robot’s capabilities when it would be advantageous to
do so due to under-trust, not only because the robot’s benefits
are not properly utilized, but also because accidents can occur
through the accumulation of Type II errors [6], [9]. Similarly,
over-trust, where a human inherently accepts robot recom-
mendations and actions even when they are suboptimal,
can have serious consequences through the accumulation of
Type I errors [18], [20]. Misaligned trust in a robot’s true
competence can have a significantly negative impact on the
effectiveness and safety of a human-robot interaction.

Lewis et al. showed that the factors correlating best with
trust in automation are a system’s reliability (error rate),
and the consequences of system faults [18]. Our results also
showed a correlation between perceived robot competence
and trust. The serial-position effect can therefore be lever-
aged to nudge a human’s trust in a robotic system in the
right direction when it is miscalibrated. For example, if it
becomes clear that a human is overly relying on a robot
with a high degree of task uncertainty, the robot’s planner
can intentionally showcase the robot’s likely failures in a
more prominent ordering. This can help the human move
into a more deliberate thinking pattern where they break
overreliance, taking appropriate action when necessary.

C. Conclusion

In this work, we investigated how the ordering of a robot’s
task failures and successes influences recalled perceptions of
robot competence and trustworthiness via the serial-position
effect. We ran an online human-subjects study (n = 53),
where participants were shown video of a robot performing
the same six tasks with the same levels of competence,
with the ordering of robot successes, partial successes, and
failures differing by experimental condition. Our results
indicate that participants’ post-experimental, recalled ratings
of robot competence and trustworthiness were significantly
lower when the robot failed at the end of the experiment,
compared to when it failed at the beginning or the middle,
indicating the presence of a recency bias. We also found that,
despite this difference in recalled competence, the average of
periodic subjective competence measures taken throughout
the experiment remained stable across conditions. We ex-
panded upon these findings to discuss potential implications
for both designing experiments to minimize the impact of
ordering effects, as well as designing robot planners that can
utilize ordering effects to influence human perceptions of
robot competence for the purposes of trust calibration.
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