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Abstract—Robotics is traditionally divided into two operational
paradigms – autonomous control and teleoperation. Both ap-
proaches are affected by the inherent strengths and weaknesses
of autonomous systems and human operators. Therefore, it is
beneficial for many tasks to blend the two operation strategies,
incorporating human-in-the-loop supervision with autonomous
control. In this work, we explore the question of control han-
dover: when should a robot act autonomously, when should a
human supervisor take control, and who should decide this? We
first analyze four candidate metrics for estimating confidence in
a policy learned via reinforcement learning (count of examples,
choice difficulty, Gaussian choice difficulty, and historical upper
confidence bound), using those metrics to autonomously trigger
handover requests to a human supervisor whenever a robot’s
confidence is low. Through a simulation evaluation, we found
historical upper confidence bound to be the most correct metric,
achieving the highest accuracy on the timing of handover
requests. Using this finding, we conducted a human-subjects eval-
uation, showing that in a human-supervised robotic navigation
task, robot-to-human handover triggered autonomously using our
method outperformed human-initiated handover, both on robotic
task performance and on subjective human measures of workload
and usability.

Index Terms—Human-in-the-loop, Control Handover, Agent
Confidence, Reinforcement Learning

I. INTRODUCTION

Robotic agents are capable of being operated either by an
autonomous controller or by a human via teleoperation. Both
paradigms have advantages and drawbacks. Teleoperation is
often challenging and time consuming for human operators,
especially for high degree-of-freedom robotic platforms [1].
It is also hard to scale, with an individual human generally
unable to control more than one robot at a time. In contrast,
autonomous control requires no direct human involvement,
enhancing scalability but often adding substantial risk. In
complex environments, designers often will not trust a robot
to make correct decisions in dangerous states unforeseen by
its training, preferring human control in such cases. Human-
in-the-loop systems broadly aim to combine both autonomous
control and teleoperation schema in an intelligent way to bal-
ance the respective strengths and weaknesses of each approach
[2].

Ideally, a robot should operate autonomously when it will
perform well on its own, and defer to a human operator by
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Fig. 1. Top: An autonomous robot attempts to travel to the yellow tennis ball
(blue square in bottom image), avoiding the red trap square (black square in
bottom image). Bottom: A visual representation of the robot’s policy at every
position when it is rotated towards the east of the environment - the dog can
go forward ”F” one square, turn right ”R” 45 degrees, or turn left ”L” 45
degrees. Also shown is the learned confidence in each state - states colored
white have very low confidence while states colored dark red have very high
confidence.

handing over control when it will perform poorly. Actually
achieving this behavior, however, remains an open research
question, and forms the focus of this work. We are interested
in answering both whether human-initiated or robot-initiated
handover of control leads to better combined human-robot per-
formance, as well as what triggers for robot-initiated handover
perform best. If a human decides to take over control of a
robot, it is usually because that human has low confidence in
the robot’s ability to take optimal actions. We extend this idea
to the robot-initiated case, examining a number of candidate
agent self-confidence measures from reinforcement learning
(RL) literature for their suitability as triggers for human-in-
the-loop control handover, giving control to a human operator
when the robot lacks confidence and operating autonomously
otherwise. This method provides the ancillary benefit of ob-
taining human expert training data precisely in the spots where



the robot is least confident, allowing the robot to respond by
adjusting its value function moving forward through inverse
reinforcement learning [3], requiring fewer handovers in the
future.

We perform two evaluations, forming the primary contri-
butions of this work: 1) we implement and then analyze
the correctness of four candidate handover triggers derived
from agent confidence measures using a simulated human-
robot navigation task, and 2) we perform a human-subjects
study using the same task to test the effectiveness of our
automated, robot-initiated handover method against human-
initiated handover on a number of objective and subjective
metrics.

II. RELATED WORK

Prior research has been conducted into developing agent
self-confidence measures for RL algorithms, often with the
aim of improving agent training. Confidence in this context
is often defined as the sureness about an estimated value for
taking a given action in a given state. Many works achieve this
by calculating confidence bounds on the value at each state-
action pair, such as Mannor et al. [4], who present a method for
determining the confidence bounds of value function estimates
in discrete Markov processes using statistical variance. White
and White [5] describe a similar method, computing the
confidence bounds of value function estimates using a history
of those estimates and bootstrap sampling. Confidence can also
be modeled as by the difference between the estimated values
of the highest valued and second highest valued actions from
a state, otherwise known as the choice difficulty [6]. All of
these measures are designed for use during agent training,
providing means to track exploration and exploitation [7] and
as an indicator of when to stop training. Our work, on the other
hand, explores using these measures to mediate handover in
human-in-the-loop robotic systems.

Additional techniques constantly maintain a distribution of
possible value function estimates for each state-action pair
in order to train risk-aware agents. Though computationally
expensive, these distributions carry more information than
a simple expected value, enabling alternate and complex
decision criteria. For example, an agent could elect to choose
an action with the lowest probability of a negative reward
in certain situations. Bellemare et al. [8] argue the value
of such distribution-estimating techniques for improving risk-
aware behavior in RL agents. Morimura et al. [9] introduce
an approach for producing non-parametric approximations
of these value-function distributions, also demonstrating im-
provement in high-risk RL environments. Cao et al. [10]
employ a distributional technique for confidence-aware RL
in a self-driving car domain, selecting an RL-based or a
rule-based policy depending on their respective confidence
levels. This represents a similar motivation to our work –
instead of switching control between two policies, we are
interested in switching between human and robotic control,
using confidence measures to do so.

III. CONFIDENCE MEASURE SIMULATION EVALUATION

Through simulation, we evaluated four RL-based agent con-
fidence metrics on their feasibility as an autonomous trigger
for robot-to-human control handover.

A. Simulation Environment

Fig. 2. Simulated navigation domain used for evaluation: a quadruped robot
tries to find a tennis ball while avoiding the red trap state.

We chose a simulated discrete navigation task as our evalua-
tion domain. The autonomous agent (a quadruped robot) must
traverse a maze to locate and reach its end goal, a tennis ball,
while avoiding a trap square which will render the robot unable
to move. The robot’s state is characterized by its location on
the 5x12 maze grid, and its heading. Since the robot can face
in one of eight directions, the environment contains a total of
480 states (5 rows x 12 columns x 8 orientations per cell).
The robot can take one of three deterministic actions: rotating
to the left or to the right by 45 degrees, or moving forward
one square (diagonal moves are allowed). Attempting to move
forward into a wall results in the robot staying at its current
position.

The robot recovers a large positive or negative reward upon
reaching a terminal state of an episode (+100 for reaching
the tennis ball and -100 for landing in the trap state). Upon
reaching any other state, the robot recovers a reward of -1. This
reward structure incentivizes the robot to locate and reach the
goal in as few actions as possible.

B. Robot Policy

To evaluate the various candidate handover triggers, we
trained policies for the robot across 200 environments with
randomized goal and trap placement through tabular q-learning
[11]. For each environment, to emulate the experience of
human supervision in complex domains where perfect policies
cannot reasonably be obtained, we deliberately stopped the
agent’s training prior to a fully accurate policy being reached.
If the robot were always capable of taking the correct action
given its state, it would gain no utility from human oversight.
For the purposes of our analysis, we define an action within a
policy to be “accurate” if following the policy rollout from that
action leads to the goal state within 30 actions. Each policy
was trained for 9,000 episodes, leading to an average accuracy
of 91.8%.



Fig. 3. The learned confidence values for every state of one simulated environment using Historical Upper Confidence Bound. Each image represents the
policy for states at the given robot orientation, showing the chosen action with a letter (’F’orward, ’L’eft, or ’R’ight). Low confidence states are white, while
high confidence states are dark red. Confidence-based control handover can be used to shield against poor or partially learned policies.

C. Evaluating Confidence Measures

We analyzed the correctness of four candidate action con-
fidence measures for deciding when to handover control to a
human supervisor. To obtain a direct comparison of measure
quality, we set the threshold equivalently between conditions
so that the 15% of states with the least confidence according to
their respective confidence measures would trigger a handover.
In practice, since certain states are traversed more commonly
than others, the robot took approximately 96.8% of total
actions autonomously, electing to handover to a human super-
visor 3.2% of the time. Certain methods require extensions to
the standard q-learning training loop and are described below.
The four methods evaluated were (1) Count of Examples,
(2) Choice Difficulty, (3) Gaussian Choice Difficulty, and (4)
Historical Upper Confidence Bound.

(1) Count of Examples
This metric involves simply keeping track of the number

of times each state was visited during training of the rein-
forcement learner agent. Intuitively, agents should be more
confident in estimating the value of actions from a given
state if it has visited that state and tried those actions many
times. To support this metric, an additional table q_count
is maintained throughout the training process. When a state
is visited during the course of an episode, the count for that
state is incremented by one. A visited state can be counted at
most once during an episode.

(2) Choice Difficulty
This metric employs a choice difficulty heuristic to esti-

mate confidence, similar to the technique shown in [6]. For

each state, the difference between the highest-valued action
and the second highest-valued action is computed, with a
larger difference indicating higher confidence. The intuition
is that human-provided insight is most useful whenever the
autonomous agent does not possess an obvious best action.
This method does not require any additional details to be
tracked during training; the q-table is sufficient.

(3) Gaussian Choice Difficulty
This metric is an extension of Choice Difficulty, modelling

each q-value as Gaussian distributions parametrized by a mean
and standard deviation, and using the distribution to calculate
a likely 90th percentile value for each q-value. These upper-
bounded values are then used in the same manner as the
Choice Difficulty approach, with higher difference between
the first and second highest-valued actions leading to higher
confidence. To support this, an additional table q_dist is
used to track the mean and variance of each encountered state,
according to Welford’s online algorithm for online mean and
variance estimation [12].

(4) Historical Upper Confidence Bound
This metric calculates an upper confidence bound for the

agent’s q-function using the approach described by White and
White [5], adapted for a discrete environment. To achieve this,
an additional table q_hist is maintained, tracking the N
most recently learned q-function values for each state, in our
case the most recent 20 values. Those values are smoothed by
uniformly sampling groups of 3 values with replacement and
averaging them, placing the resultant averages in a new list.

To determine the upper confidence bound, that list of



samples is sorted largest to smallest, with the 90th percentile
value treated as the upper confidence bound. The confidence
score for this metric is the absolute difference between the
current estimated q-value and the upper confidence bound for
that q-value, with smaller values indicating higher confidence.

D. Handover Trigger Correctness Measures

Using the same notion of accuracy defined previously (an
action is accurate if it leads to a goal state within 30 turns),
we define a set of three correctness measures to compare the
suitability of the four proposed confidence metrics as handover
triggers. The first measure is the percentage of accurate actions
regarded by the robot as confident (analogous to the true
positive rate). A robot deciding not to handover when its
planned actions are already suitable is a desirable outcome, as
it avoids unnecessary interruption for the human supervisor.

Relatedly, the second measure is the percentage of inaccu-
rate actions regarded by the robot as unconfident (analogous
to the concept of true negative rate). A robot deciding it is
unconfident and handing over to a human supervisor when
it would have ended up taking suboptimal actions on its
own is a similarly desirable outcome that will improve robot
performance.

Blending these measures, we use the F1 score as the third
measure, defined as the harmonic mean of the trigger’s pre-
cision (the number of accurate actions regarded as confident
divided by the total number of actions regarded as confident)
and its recall (the number of accurate actions regarded as
confident divided by the total number of accurate actions)
F1 = 2 · precision·recall

precision+recall . This measure, also on a scale of
0 to 1, provides a single number describing the correctness of
the handover trigger.

Fig. 4. A visual representation of a robot policy when rotation is fixed to
the south-east direction (F: go forward, L: turn left, R: turn right). The black
square is the trap, the blue is the goal, and grey are obstacles. Note that
the state at x=2, y=0 has a sub-optimal learned policy: the robot is facing a
corner, and moving forward would simply run into the wall. The robot should
ideally recognize this state as unconfident and request a handover to a human
supervisor.

E. Results

Through training policies and confidence measures over
200 environment setups, we obtained cumulative results on

Fig. 5. The evaluation of the four confidence metrics averaged over 200
learned policies on randomly configured environments. Higher values are
better in each case.

the correctness of each confidence measure-based handover
trigger, as shown in Fig. 5.

On all measures, the best performing confidence metric was
Historical Upper Confidence Bound, with 82.7% of incorrect
actions leading to handover trigger (far higher than the next
leading candidate at 67.3%), 90.9% of correct actions avoiding
a handover trigger, and an F1 score of 94.4%.

Choice Difficulty also performed well, ranking second on all
measures, but struggled whenever facing a choice between two
similarly valued actions which both led to optimal solutions,
underrating that state’s confidence. Gaussian Choice Difficulty
performed notably worse, with only 28.9% of sub-optimal
moves triggering handover, a poor true negative rate. Count
of Examples performed worst of the four metrics, largely due
to the high concentration of most visited states around the
agent’s starting state, which led to those states always being
rated as confident, and far away states unconfident, in spite of
relative the policy optimality in those areas.

Although further optimization could be achieved by a more
principled choice of confidence threshold for each method
which reduces false positive and false negative rates, our
simulation evaluation serves to highlight the relative suitability
of Historical Upper Confidence Bound as an automated trig-
ger for robot-to-human handover by reinforcement learning
agents. For this reason, that is the method we implemented
for use in our human-subjects trial.

IV. HUMAN-SUBJECTS EVALUATION

We designed and conducted a small IRB approved between-
subjects human-subjects study (n = 7) to determine the
relative effectiveness of human-initiated handover vs. robot-
initiated handover using the Historical Upper Confidence
Bound method. In the study, a human supervised the same
robot simulation task described in Section III-A, while attend-
ing to their own task simultaneously.



A. Hypotheses

H1: Robot-initiated handover will lead to higher robot task
performance compared to human-initiated handover.

H2: Robot-initiated handover will lead to higher human task
performance compared to human-initiated handover.

H3: Robot-initiated handover will be rated as more usable
compared to human-initiated handover.

H4: Human-initiated handover will be rated as requiring
more workload compared to robot-initiated handover.

B. Experimental Setup

Participants played the role of a human supervisor for the
simulation environment described above. On one monitor,
participants see a game window showing the robot and its
environment (Fig. 2). On another, participants see a picture
card memory-matching game. The goals of each experimental
exercise are to maximize the number of matches found by
the human participant in the memory-matching game, and to
maximize the number of tennis balls found by the autonomous
robot within a set time window. Most of the time, the robot
operates autonomously, following its policy to locate the tennis
ball, and respawning in a random location to head towards the
tennis ball again once it is reached. This leaves the human
available to attempt to find and clear matching cards from the
screen with their mouse.

The method of control handover from robot to human forms
the difference between the two experimental conditions. In
human-initated handover, the human decides to take control
of the robot by hitting the spacebar and entering actions man-
ually using keyboard control, until they are satisfied the robot
will operate successfully from that point onward, relinquishing
control to the robot by hitting the spacebar again. Presumably,
the human will decide to take control when they witness the
robot behaving sub-optimally (for instance, if they are stuck
on an obstacle).

In robot-initiated handover, the robot will decide when
the human should take control, triggering a handover when it
reaches one of the 15% lowest confidence states according to
the Historical Upper Confidence Bound method. To alert the
human, the robot sounds an audible handover alarm (a series
of sharp beeps). The robot then waits for the human to input an
action via the keyboard, returning to autonomous control if the
new state has sufficient confidence, or sounding the handover
alarm again if not, requesting another human-provided action.

C. Protocol

Though participants see both conditions in the experiment,
their ordering is randomized and counterbalanced. To begin,
participants are given descriptions of their memory-matching
and robot-supervision tasks as well as opportunities to play
the memory-matching game and enter actions for the robot to
reduce possible learning effects. After onboarding, participants
play the first round for 2 minutes, with the number of success-
ful matches in the memory-matching game and the number
of tennis balls found by the robot recorded. After the round
concludes, participants are administered two brief surveys: the

NASA TLX [13] to determine subjective workload and the
SUS [14] to determine the subjective usability of the condition
they just saw.

Following this, participants play a second experimental
round for 2 minutes, using the opposite handover control
method from the first round. The performance is recorded,
and the TLX and SUS are administered again. Lastly, a final
survey is administered, asking demographic and comparative
questions and soliciting open-ended feedback. Specifically,
participants are asked to decide both which round they felt
required the most mental effort, as well as which round they
found the robot to behave the most intelligently.

D. Results

Fig. 6. Objective performance: number of robot targets found and human
matches made by condition, with means and significance shown.

For robotic performance, we measured the average number
of tennis ball targets found across all 2 minute rounds. Using a
one-tailed t test, we measure whether participant intervention
in the human-initiated or robot-initiated conditions led to
better robot performance. Running the test, we found that the
robot in the robot-initiated handover condition (M = 24.00)
found significantly more tennis balls than the human-initiated
handover condition (M = 19.29); (t(13) = 2.80, p = 0.009).
This result serves to support H1.

For human performance, we measured the average number
of matches made in the memory-matching game across all 2
minute rounds. Again using a one-tailed t test, we compare
the matches made across the two conditions. No significance
was found between human performance in the robot-initiated
handover condition (M = 19.14) and in the human-initiated
handover condition (M = 16.86), though the mean is higher in
the robot-initiated case. More data is required to demonstrate
the effect more definitively. Due to the lack of significance,
H2 is inconclusive.

Anecdotally, individual participant strategy appeared to play
a large role in how human and robotic performance were
affected in the human-supervised condition. Participants who
frequently checked the other monitor to supervise the robot
lost performance on the memory-matching task due to distrac-
tion, whereas participants who focused mainly on their own



memory-matching task ignored the robot for longer when it
required help, degrading robot performance. This represents a
key tradeoff for attention which is somewhat remedied by the
autonomous, robot-initiated handover paradigm.

Fig. 7. Rated usability and workload by condition (0-100), with means and
significance shown. It is preferable to have a low rating of workload and a
high rating of usability.

Individual survey responses for the NASA TLX and SUS
scales were coded and added together to form uniform scales
from 0-100. Lower TLX scores are regarded as preferable
(lower perceived workload), whereas higher SUS scores are
preferable (greater usability). Via a one tailed t-test, we
compared the two conditions on both subjective measures.

No significant effect was found on TLX score between the
robot-initiated (M = 47.61) and human-initiated conditions
(M = 60.47); (t(13) = −1.64, p = 0.064), though the
initial results suggest that an effect indicating lower workload
for robot-initiated handover may be revealed through further
data collection. Significant differences were found on SUS
score however, with the robot-initiated handover condition
(M = 79.05) rated as more usable than the human-initiated
handover condition (M = 63.21); (t(13) = 1.81, p = 0.047).
This result serves to support H3.

Although the TLX measure alone does not conclusively
address the hypothesis of lower workload in the robot-
initiated condition, 7 out of 7 participants indicated in the
post-experimental survey that the human-initiated condition
required the higher mental effort of the two rounds, a signifi-
cantly greater proportion than the expected random proportion
of 50%, p = 0.008. This result does serve to support H4.
All 7 participants also chose the robot in the robot-initiated
round as being the most intelligent. These results combine to
showcase the benefits of automated control handover using the
Historical Upper Confidence Bound method.

V. CONCLUSION

Through our simulated evaluation of four RL confidence
measures, we found that determining confidence by tracking
the difference between the upper confidence bound and the
current best estimate of the value for a given state-action
pair (the Historical Upper Confidence Bound method) led to
the highest correctness as a handover trigger. It led to the

highest fraction of suboptimal actions triggering a handover
to the human, as well as the lowest fraction of optimal actions
interrupting the human unnecessarily.

We compared this method of handover against human-
initiated handover in a human-subjects study. In the study,
participants supervised a robot navigation task while con-
ducting their own task simultaneously. We found that robot-
initiated handover, based on the Historical Upper Confidence
Bound measure, led to higher robot task performance, as well
as higher subjective ratings of usability and lower workload.
These results serve to highlight the potential of this confidence
based handover technique for human-in-the-loop supervision.

Future work will focus on refining this technique, devel-
oping more principled ways to set the confidence threshold
used to trigger handover and evaluating the method in larger,
more complex domains. Additionally, future work will aim
to close the training loop by using the human-provided ac-
tions following robot-to-human handovers as training data to
improve the value estimates in the lowest confidence states
through inverse reinforcement learning. This will aid in life-
long learning, improving robot performance and automated
confidence determination steadily as the human interacts with
the robot, leading to a smaller and smaller fraction of states
requiring handover over time.
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